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Abstract-A continuum damage model for heat conduction is proposed in this work to account for the 
degradation of the bulk thermal conductivity due to the formation of subscale defects in the solid. 
Specifically, defects in the form of cracks, or mesocracks, have been considered. A field theory is developed 
analytically which isolates the effects of mesocracks in an added matrix of the thermal resistance. Followed 
by a general formulation, the concept of mesocrack damage in the process of heat transport is further 
illustrated by considering a three-dimensional and isotropic medium transferring the thermal energy 
according to Fourier’s law of heat conduction. It is found that the amount of degradation of the bulk 
thermal conductivity increases linearly with the mesocrack density. In the case that the solid is saturated 
with mesocracks, a limiting value of thermal conductivity E being one-ninth of the intact value is obtained. 
A detailed discussion on this limiting value is then provided with emphasis placed on the identification of 
the damage parameters in the temperature-gradient model proposed earlier for assessing the mesocrack 

damage from a different point of view. 

INTRODUCTION 

MANY materials such as rock, concrete, ceramic, etc. 
have existing crack structures generated either from 
natural consequences or from manufacturing pro- 
cesses. The size of the continuum elements for these 
materials should be large enough to include sufficient 
populations of these subscale cracks such that it 
adequately reflects average bulk material behavior. In 
metallic materials, the sizes of subscale structures such 
as voids, grains, dislocations, etc. are measured in the 
Angstrom to micron range and are much smaller than 
that for the macroscopic scale measured in the centi- 
meter or up level. Thus, these subscale structures 
are referred to as microscale structures. The subscale 
cracks in rock, concrete, etc. are in the size range from 
100 pm to millimeters. Consequently, the size of these 
cracks may be referred to as mesoscale and the cracks 
mesocrach. When geometrical defects are initiated in 
the processes of momentum or heat transfer in a solid 
medium, the overall load- or energy-carrying capacity 
of the solid usually degrades due to the creation of 
new free surfaces. If the characteristic dimensions of 
the defects are in the same order as the global dimen- 
sions of the solid, the effects of the defects can be 
resolved via a macroscopic approach by specifying the 
boundary conditions at the surface(s) of the defect. 
Typical examples include the temperature fluctuations 
ahead of a slowly propagating crack [l] and the ther- 
mal field around a macrocrack tip [2] in the solid. 

Generally speaking, a macrocrack with sharp tips 
induces a l/,/r-type singularity for the temperature 
gradient, with r being the distance measured from the 
crack tip, while the temperature remains bounded as 
the crack tip is approached. 

In studying the influences of the mesocracks on the 
energy-carrying capacity of the solid medium, it is 
worthwhile to make a qualitative assessment on the 
size effects of a crack on the singularity of the near- 
tip temperature gradient. The temperature and the 
temperature gradient fields obtained by Sih [2] in the 
vicinity of a macrocrack tip can be expressed by 

T(r, 0) = -2H,(ar) “‘sin (e/2) 

T,,(r, f7) = -Ho(a/r) ‘I2 sin (e/2) 

with HO = T,T/,/2 

where 0 denotes the polar angle measured 

(1) 

from the 
leading edge of the crack tip, a the half length of the 
crack, ‘TT the remote temperature gradient applied to 
the cracked solid, and the subscript denotes the partial 
differentiation with respect to the corresponding co- 
ordinates. The quantity ,/aH,, is called the strength 
of the singularity of the temperature gradient which 
depends on the remote temperature gradient and the 
size of the crack. For a macrocrack with a being of 
the order of 1 m, for example, equation (1) depicts 
a ‘near-tip’ temperature gradient at r 2: 0.1 mm of 
approximately 70 times higher than that applied 
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NOMENCLATURE 

u characteristic dimension of the Greek sy-mbols 
mesocrack [m] P transformation matrix between the prime 

e unit normal vectors along the coordinate and the physical coordinate systems 
axes B Kronecker delta function 

f volume fraction of the mesocracks 0 Euler angle [deg] 

9 temperature function per unit heat flux 5 material point at the boundary surface of 
[m’K W-‘1 the entire body 

G Green’s function of the temperature per dJ Euler angle [deg]. 
unit heat flux [K W- ‘1 

H added tensor in the overall thermal Subscripts and superscripts 
resistance tensor [m K W- ‘1 ‘Y component of vector X in the .u,-direction, 

k thermal conductivity [W m- ’ K- ‘1 i= 1.2.3 

“N 
unit normal vector of the crack surface XR ratio of the quantity X of the matrix to 
total number of cracks per unit volume that of the air 

Q heat flux applied perpendicularly to the X> indicial notation for the tensorial quantity 
boundary surface [w m- ‘1 ‘1 

r radial distance measured along the crack x, P.Y ?.r 
surface from the center of the crack [m] Y. S.Y ?s; 

s boundary surface of the entire body [m2] Xc physical quantity Xin the cavity 
T temperature [K] “’ x physical quantity X in the matrix 
V total volume of the entire body [m’] R volumetric average of X 
.Y spatial coordinates [m] X’ prime coordinates aligned to the cavity 

? coordinate perpendicular to a line crack. x’- ’ inverse of X. 

remotely and the singularity of the temperature grddi- material degradation, Budiansky and O’Connell [5] 
ent is quite obvious. For a small crack with character- first deriv-ed expressions for the degraded material 
istic dimension a u 0.1 mm. a material point at the properties due to mesocracking. Later in 1983, Horii 
same distance of r = 0.1 mm only experiences a tem- and Nemat-Nasser [6] extended these expressions to 
perature gradient of 0.7 times of T.T. In other words, account for the effects of mechanical anisotropy due 
when the size of the crack becomes small, the strength to the closing of the crack surfaces. Chen [7], Kipp 
of the singularity of the temperature gradient no et al. [8]. and Taylor et al. [9] developed dynamic 
longer serves as a reliable index for measuring the continuum damage theories which included explicitly 
intensified energy concentrated at the crack tip and a the strain rate effects. This model was recently 
different measure has to be introduced. In reality, extended [ 10. 1 I] in studying the cumulative material 
because we cannot afford to simulate hundreds of damage under quasi-static loading conditions. Gener- 
mesocracks on a one-by-one basis, the mesocracking ally speaking, a direct consequence of material dam- 
effects are most appropriately described by a con- age is the non-linear behavior of the stress vs the strain 
tinuum theory which provides a post-damage assess- response. This is the direct result of the evolutionary 
ment on the degradation of the energy carrying characteristic of damage and its interaction with 
capacity of the solid in an overall or bulk sense. applied loads. 

The discipline of continuum damage mechanics has 
been developed for this purpose. In essence, it inves- 
tigates the evolution of the constitutive behavior of the 
solid resulting from the loss of the granular integrity in 
load transmission. The research in this field is still 
ongoing and the main effort is devoted to the cumu- 
lative degradation of the mechanical properties of the 
material from their intact values. Detailed discussions 
and the related publications on this subject can be 
found in an excellent review paper by Krajcinovic [3] 
and a newly published book by Kachanov [4]. In these 
articles, the damage concept is discussed for ductile 
materials with intrinsic non-linear stress-strain curves 
and under cyclic loads. In assessing the quasi-brittle 

While the continuum damage mechanics on the 
load-bearing capacity of solids is developing, the 
effects of the material damage on the loss of energy- 
carrying capacity of the solid has not yet attracted 
sufficient attention. In a recent work [ 121, an attempt 
was made to accommodate the degradation of the 
bulk thermal conductivity in a solid medium due to 
mesocrack formation in the thermal loading history. 
This work is essentially an extension of the model 
proposed earlier in refs. [lo, 111. The establishment of 
a common damage measure for evaluating the degra- 
dation of the energy- and the momentum-carrying 
capacities facilitates the consideration of thermal: 
mechanical interactions as an entirety in the history 
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of damage evolution. The evolution of the damage the full quantities without a superscript denote those 
was discussed in great detail in ref. [12]. for the entire body. Obviously 

As a continuation of the development, the present 
study aims to derive expressions to describe the overall 
degradation of the bulk thermal conductivity of a 
material volume due to the presence of mesocracks. 
Previous work by Hoenig [ 131 and Hasselman [14] 
dealt with the same subject. The present approach 
is mathematically rigorous and is in parallel to that 
suggested by Horii and Nemat-Nasser [6] in con- 
tinuum damage mechanics which investigates the 
overall degradation of elastic moduli via the concept 
of the volume fraction of the microcracks in a 
Hookean matrix. Finally, the way in which damage 
evolution can be coupled into these expressions has 
been suggested. 

V= VC-tVM. (2) 

Based on the volume average concept, the average 
temperature T, the average temperature gradient T,i, 
and the average heat flux gi over the entire body can 
be expressed as 

[T* TiTqi] = i [7Xx,), 7’,i(-~j)vqi(-~,,)ldV (3) 
l Y 

with x, being the spatial coordinates of a material 
point and i, j = I,2 and 3 in the Cartesian coordinate 
system. Similarly, the average quantities for the meso- 
cracks and the matrix material can be written in the 
following form : 

WEAKENING OF A FOURIER SOLID BY 

MESOCRACKS 

The influences of the mesocracks on the energy 
carrying capacity of a solid medium can be analyzed 
by considering a three-dimensional solid with ran- 
domly distributed mesocracks as shown in Fig. 1. The 
solid has a total volume of I’ and is subject to a heat 
flux vector Q perpendicular to its boundary surface 
S. In the sequel the physical and the geometrical quan- 
tities with superscripts C and M denote, respectively, 
those for the mesocracks and the matrix material, and 

Matrix VM \ :I / s 

v 1 

x3 

/‘,,- x1 

x3 
‘12 

* 

Q 

-_ _- 91 

x1 x2 

43 

FIG. 1. A three-dimensional medium containing randomly 
oriented mesocracks. 

[Fv cy $1 = & 
1 
vc [T(x,), 7’,i(-xj)v qi(-r,)l dV 

for the mesocracks and 

[TM* C’t$‘l = & yu [T(xj), T.i(xj)v qi(-r,)l dV 
I 

(4) 

for the matrix material. The average quantities in the 
mesocracks and the matrix are related to those of the 
entire body by the volume fraction rule, i.e. 

q, = (1 -j-g +fqC 

T., = (1 -f)r,y +fc, etc. (5) 

where f is the volume fraction of the mesocracks 
defined as p/V. Let us now focus our attention on 
the average temperature gradient F,i in equation (5). 
If the heat transport process in the matrix material 
is assumed to be homogeneous and following Fourier’s 
law of heat conduction 

$’ = kijTy in VM (6) 

and consequently 

ry = R,$’ in VM (7) 

where Rij denotes the inverse of the conductivity 
matrix, ki; ‘, of the matrix material. Substituting the 
expression for 41” from equation (5) into equation (7), 
and the result for Ty into the second of equation (5), 
we obtain the expression for the overall temperature 
gradient averaged over the entire body 

Ti = R,&-fR,cjF +f c (8) 

where the complicated heat transfer modes in the 
aerial closure between the mesocrack surfaces are 
included in the term $. The last term containing the 
temperature gradient in the mesocracks 

(9) 

can be related to the average heat flux vector qj of the 
entire body according to the divergence theorem. We 
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first relate the temperature gradient averaged over the 
total volume of the mesocracks to the temperature 
specified over the mesocrack surfaces : 

Then, by denoting the Green’s function G(.ri, &) for 
the temperature induced at the material point xi by a 
unit heat flux applied at &on S, the temperature T(.r,) 
in equation (10) can be expressed by 

WJ = 
I 

G(.r,, &)Q(<,) dS, for <, E S. (I 1) 
s 

Since the total energy supplied into a material volume 
at & at the boundary surface S is equal to the sum of 
those entering into the material volume from three 
perpendicular directions xi, the magnitude of the 
applied heat flux Q perpendicular to the surface area 
at C$ (refer to Fig. 1) can be expressed in terms of the 
average internal heat flux vector by 

Q(5J = &n, (Si)t at s’i E S (12) 

with nj(&) being the unit normal at 6. Substituting 
equation (12) into equation (I 1) and the result into 
equation (10) then yields 

(13) 

where the unit normal vectors n, and ni are functions 
of space variables & (on S) and s,: (in V), respectively. 
If we further denote the quantity enclosed in the 
braces by H,, i.e. 

Hij = L 
IS v SC s 

G(xi, {,)n,n, dS dS= (14) 

equation (8) can be written in the form of 

Ti = Rijlij -fit&, with R,j = R,+H,,. (15) 

In the absence of mesocracks in the solid medium, SC 
(and hence H,j) and f are equal to zero and equation 
(15) reduces to Fourier’s law of heat conduction in 
an averaged form. The influences of the mesocracks 
on the energy carrying capacity of the solid are 
implemented in the second term in equation (15) and 
the matrix Hi, defined by equation (14). At this point, 
determination of the matrix H, relies on the Green’s 
function G(si, &) and the complicated integral of 
equation (14). The quantity 4: in the second term of 
equation (15) depends on the boundary conditions 
specified at the mesocrack surfaces as well as the 
thermodynamic conditions in the aerial closure 
bounded by the mesocrack surfaces. In the most com- 
plicated situation, it can involve the solution of an 
integral-differential equation due to thermal radiation 
from the mesocrack surfaces. As a lumped approxi- 
mation for an opening crack with sharp tips and its 
surface subjected to a constant temperature, the aver- 
age heat flux q? can be expressed in terms of the linear 

combination of the heat fluxes due to conduction. 
convection, and radiation : 

c,j’I‘ = 2[k~,~++(T,-T,)+a(T~-T4,)], 

and & = 4: = 0 (16) 

with T,, and T, being, respectively, the temperature 
of the crack surface and the aerial closure, h the heat 
transfer coefficient of the air, and c the Stephan- 
Boltzmann constant of thermal radiation. In equation 
(16) k: is the conductivity matrix of the air and c 
the temperature gradient across the aerial closure. The 
constant 2 in the front is due to the presence of two 
crack surfaces bounding the aerial closure. For a crack 
with a slit-geometry and sharp tips, however, we 
notice that the aerial closure occupies an infinitesimal 
space between the crack surfaces and its initial tem- 
perature T, will be heated up to the level of T, after 
the steady state is reached. These observations suggest 
a simplified result 

q,’ = 0, fori= 1,2.3 (17) 

and according to equation (15) 

T., = RJ, 1 with wij = R,; i- H,, (18) 

The effects of the mesocracks on the energy-carrying 
capacity of the solid medium are thus concentrated 
on the added matrix Hi, because the aerial closure is 
assumed not to carry thermal energy in a steady state. 
To be also noticed is that equation (18) for the average 
temperature gradient over the entire body may 
become exact if an insulation boundary condition, i.e. 

4i _ ri = 0 at SC, is applied at the crack surfaces. In 
this case there exists no energy exchange between the 
air enclosed in the mesocracks and the crack surfaces, 
and 4: in equation (IS) is equal to zero. 

DETERMINATION .OF H,i-AN EXAMPLE OF 

PENNY-SHAPED CRACKS 

In this section, the overall (bulk) thermal resistance 
(or conductivity) of a Fourier solid containing ran- 
domly distributed penny-shaped cracks is estimated. 
To include the interaction effects, the present paper 
adopts the self-consistent approach [5. 61 which 
assumes that the material properties of a solid con- 
taining a single crack are identical to that of the bulk 
values. 

The effects of the mesocracks on the conductivity 
matrix of the solid can be obtained if the added matrix 
H,j, for i, j = 1,2, 3, is determined. Instead of search- 
ing for the Green’s function G(xi, &) and evaluating 
the complicated integral of equation (l-1), the matrix 
Hij can also be determined by combining equations 
(10) and (13). According to these two equations, Hij 
can be related to the surface integral around the meso- 
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crack surfaces by 

= Hijqj. (19) 

In applying the self-consistent method, the matrix Hij 
in equation (19) is calculated for the single crack, and 
equation (18) is used to estimate the bulk thermal 
resistance. For a set of the prime coordinate system 
with the unit normal e; being perpendicular to the 
penny-shaped crack surface A, as shown by Fig. 2. we 
may define an equivalent matrix Hi, on the prime 
coordinates as 

[T’]n; dS = H;& (20) 

where [r] denotes the temperature jump, according 
to the surface integral in equation (19), across the 
mesocrack surface A the unit normal n’ of which is e’,. 
The unit normals e’, and e; are coincident with the 
crack surface and the relationship between e; and the 
unit normals of the physical coordinate system e, is 

with 

ei = /$,e; (21) 

-sin6 -sin#cosB cos 4 cos e 

Btj = case -sin$sinB cos 4 sin 0 

0 cos 4 sin f/.~ I 

(22) 

where 0 ( 0 < 271 and 0 < $J C n/2 (see Fig. 2). Deter- 
mination of Hj, according to equation (20) depends 
on the temperature jump across the mesocrack surface 
A. The temperature jump, obviously, depends on the 
constitutive behavior of the solid medium. In order to 
illustrate the procedure discussed so far, the tem- 
perature field around a penny-shaped crack obtained 
by Florence and Goodier [ 151 is used. In their work 
the three-dimensional Fourier solid is assumed to be 
isotropic and homogeneous, and the thermal resist- 
ance matrix R, in equation (18) in this case can be 

Insulated 
penny-shaped 
crack 

FIG. 2. The relationship between the prime coordinate system 
attached to the surface of a penny-shaped crack and the 

physical coordinate system. 

expressed as 

R, = RI, for i, j = 1, 2, and 3 (23) 

where 1, is the identity matrix defined as I, = Sij 
with 6, being the Kronecker delta function. For the 
penny-shaped crack subjected to a uniform steady 
heat flow in the e’,-direction perpendicular to the crack 
surfaces, the temperature distributions at the crack 
surfaces with angular symmetry were derived as 

T(r) = + ; (a’-r2) l/Z&, for 0 < r < Q (24) 

where the positive and negative signs correspond, 
respectively, to those along the upper and lower sur- 
faces of the crack, r measures the radial distance in 
the plane of the crack from its center, R stands for the 
thermal resistance of the solid, and a the radius of the 
penny-shaped crack. Clearly, equation (24) indicates 
a temperature jump 

[T] = 3+)i;‘q; 

across the crack surfaces. Except for the coefficient 
4R/n, we notice that equation (25) presents an identi- 
cal r-dependency to that in the displacement jump 
across the crack surfaces [6]. Since e; is the unit nor- 
mal to the crack surface, substitution from equation 
(25) into equation (20) yields 

H’ _!R& 
33 - 3 

, and Hij = 0 otherwise. (26) 

This result shows that the energy-carrying capacity of 
the solid is only affected by the mesocracks in the 
direction of the heat flow perpendicular to the crack 
surfaces. 

In applying the self-consistent method, the thermal 
resistance R in equation (26) is replaced by its bulk 
value R, the matrix Hjj obtained in equations (26) in 
the prime coordinate system is transformed back to 
the physical coordinates to obtain H,, and the results 
are then averaged over all crack orientations to evalu- 
ate the bulk resistance. Since the distribution of the 
mesocracks in the solid is random, these procedures 
render that 

Hi, = 2 
2n n/2 

15 
PimBjmHbn ~0s 4 dti d6 (27) 

0 0 

with /Iij being the transformation matrix defined in 
equation (22) and hence 

Hi, = H;J{cos3 4cos2 6) 

H, 2 = H;,l{cos3 9 cos 6 sin 6) 

H,, = H;31(cos2~sin~cos0} 

Hz, = H,2, H22 = H’,,l{cos3 d, sin’ 0) 

H23 = H’,31{~~~2 4 sin (b sin 6> 

H3, = HI,, H32 = H23 

H3, = H;31{sin2 $COS~} (28) 
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with H’,, being that obtained in equation (26) and the 
integrator I(X) defined as 

r{x(& 4)) = ; 
2n 

II 

n; 2 
X(6,4) d$ d0. (29) 

0 0 

By noticing the orthogonality of the sine and cosine 
functions in the domain from 0 to 2n, the components 
of H,, for i, j = 1,2. and 3, can be integrated directly 
according to equations (28) and (29). The result is 

H, = $ &-Ii, (30) 

where the total number of cracks in a material volume 
with a characteristic dimension of u has been sub- 
stituted by the volume fractionfof the mesocracks [6, 
7,9]. Mathematically,f= Nu’. Substituting equation 
(30) into equation (18) with Rij being the isotropic 
matrix defined in equation (23), the ratio of the iso- 
tropic thermal resistance a/R can be solved as 

li 9 

R=9_8f (31) 

and consequently, since the thermal resistance is the 
reciprocal of the thermal conductivity 

IG 
z= 1-fJ (32) 

Equation (32) is identical to that obtained by Hoenig 
(I 31 via a different approach employing the electrical 
and thermal analogy. It presents an expression for 
the degraded bulk thermal conductivity due to the 
presence of mesocracks and depends on the meso- 
crack density J In a Fourier solid without a crack, f 
is equal to zero and equation (32) shows no degrad- 
ation of the bulk thermal conductivity, and hence no 
change in the energy-carrying process in the solid. 
In the solid with fully saturated mesocracks, f = 1, 
equation (32) shows that the bulk thermal con- 
ductivity will degrade to one-ninth of the intact value. 
This result must be considered approximate, however, 
since the validity of the self-consistent approach at 
high crack density is questionable. Under a tem- 
perature gradient established between two material 
points in the solid, this implies the solid medium full 
of mesocracks can only carry one-ninth of the thermal 
energy in comparison with that without a crack. 
Figure 3 shows that the degradation of the bulk ther- 
mal conductivity varies as a function of the mesocrack 
density. As expected, the amount of degradation 
linearly increases as the mesocrack density developed 
in the solid increases. 

The results obtained so far are limited to a Fourier 
solid carrying heat in an isotropic manner. For the 
solid with anisotropic heat-carrying characteristics, a 
full matrix will appear for the thermal resistance Rij 
and the temperature distributions along the upper 
and lower surfaces of the crack, equation (24), and 
hence the temperature jump, equation (25), must be 
rederived. The rest of the procedures stay exactly 

No Damage 

I I 

0 .s 1 
f 

FIG. 3. Degradation of the bulk thermal conductivity as a 
linear function of the mesocrack density. equation (32). 

the same as proceeded so far which will render an 
anisotropic matrix for H,. The ratio for the degra- 
dation of the thermal conductivity in this case will be 
much more complicated than that shown in equation 
(32) and will contain, in general, a total of nine com- 
ponents for E,, . 

GEOMETRY OF DEFECTS 

The geometry of defects in a three-dimensional solid 
is assumed to be randomly distributed penny-shaped 
cracks in this study. When the geometrical shape of 
the defects changes, the amount of degradation of the 
bulk thermal conductivity will change accordingly. 
This can be seen clearly by inspecting equation (19) 
where the surface integral on temperature over the 
entire surface depends on the specific geometry of the 
defects. It is only for a penny-shaped crack that this 
integral can be reduced to the temperature jump 
across the crack surfaces, equation (20). 

In making contact with the e.xisting models 
accounting for the degradation of the bulk thermal 
conductivity, we compare our results with those 
obtained by Loeb [ 161, Budiansky [ 1 T]. and Agapiou 
and DeVries [18]. The geometry of inclusions con- 
sidered in these works are pores [16, IS] and cacities 
[17]. In the former case involving pores. the volume 
fraction refers to the pore fraction cross-sectional area 
for isometric pores. 

In summary, the effects of pore and cavity fractions 
on the degradation of bulk thermal conductivity are 
expressed by 

c/k = 1 - A ,A Loeb’s pore model 

262+[3(f,k2+f2k,)-2(k,+k2)]~-k,kz = 0, 

Budiansky’s cavity model 

@k = (I -A,f)/(l +A’f+A,f ‘1. 
Agapiou and DeVries’ model. (33) 
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The coefficients A involved in the first and the third 
equations depend on the material type under con- 
sideration. For a material with two constituents, the 
bulk thermal conductivity in Budiansky’s model 
depends on the respective thermal conductivities (k, 
and k,) and the volume fractions (f, and fi) of the 
constituents. Basically, the models proposed by Loeb 
[16] and the present work vary linearly with respect 
to the volume fraction of the defects, while those by 
Budiansky [ 171 and Agapiou and DeVries [ 181 are 
non-linear models. For 304L stainless steel powder 
metallurgy material, experiments were carried out 
recently and all the coefficients A in Loeb’s and 
Agapiou and DeVries’ models were determined by 
curve fitting techniques [18]. The results are 

A, = 1.755 in Loeb’s model 

and 

A2 = 1.88, A, = 0.38, A4 = 2.3 

in Agapiou and DeVries’ model. (34) 

The graphical representations for these models are 
displayed in Fig. 4. Curves 14 refer to, respectively, 
the distributions employing the models proposed 
by the present analysis, Budiansky, Agapiou 
and DeVries, and Loeb. The results obtained by 
Budiansky, Loeb, and Agapiou and DeVries all fall 
in the threshold of experimental tolerance. The non- 
linearity of the model proposed by Budiansky seems 
to be weaker than that by Agapiou and DeVries in 
the range of 0 <f c 0.4. As far as the geometry of 
the defects is concerned, we first notice that the degra- 
dation of the thermal conductivity, namely l/k, is 
more serious for the case involving randomly dis- 
tributed pores than that involving mesocracks. The 
physical interpretation is that under the same value of 
volume fraction f, the pores reduce the effective heat- 
carrying material volume more than the mesocracks. 
In comparing the present model with the linear model 
proposed by Loeb, we also notice that the slope of 

Mttttrtthr 

1 Ptrtt 

I I 

0 .l .2 .3 .k 
f 

FIG. 4. Comparisons with the pore and the cavity models. 
Curve l-The present mesocrack model. Curve 2-Bud- 
iansky’s cavity model. Curve 3-Agapiou and DeVries’ 
porous model. Curve 4-Loeb’s porous model (Curves 3,4, 
and the experimental results were obtained by Agapiou and 

DeVries [HI]). 

degradation induced by the pores is approximately 
twice as much as that induced by mesocracks, see 
equations (32) and (33). This is because the reduction 
of the material surface carrying the heat flux in the 
case of pores of average radius R (4nR*) is twice as 
much as that in the case of penny-shaped cracks with 
the same averaged radius (2nR*). The amount of 
degradation of the bulk thermal conductivity is conse- 
quently twice as much. This observation leads to the 
establishment of a scaling law based on the geo- 
metrical shape of defects. Such a trend is currently 
further examined by considering a three-dimensional 
solid containing ellipsoidal cavities. Should the rule 
be valid in general, the ratio of the surface of an 
ellipsoid to that of a sphere with its diametral plane 
coincident with one of the major axes of the ellipsoid 
should give accordingly the ratio of the degradation 
of the bulk thermal conductivities. This could be a 
very convenient rule for use in technologies dealing 
with the heat conduction in porous media. 

CONCLUSIONS 

The presence of mesocracks in a solid medium 
reduces the effective material volume in carrying the 
thermal energy. As a result, the amount of heat carried 
through the medium should decrease when the meso- 
crack density increases. An analytical model for eval- 
uating the degradation of the energy-carrying capacity 
of the solid medium due to mesocracks is proposed in 
this work which relates the degraded bulk thermal 
conductivity to the mesocrack density. In a steady 
state, the degradation of the bulk thermal con- 
ductivity for an isotropic Fourier solid is derived in 
equation (32). It presents a linear relationship between 
k/k and f as shown in Fig. 3. In the absence of the 
experimental data confirming the proposed analytical 
model, the observation based on the geometrical 
shape of the internal cavities validates the theory at 
least on a qualitative basis. Under the same volume 
fraction and the characteristic dimension of the inter- 
nal cavities, as clearly shown in Fig. 4, the degradation 
of bulk thermal conductivity in a solid due to pores is 
more serious than that due to mesocracks because the 
pore geometry reduces the effective material volume 
carrying the thermal energy more than the penny- 
shaped crack. 

Consideration of the mesocrack damage is espe- 
cially important in the heat conduction problems 
with large temperature gradients. The problems in this 
category involve those with geometrical singularities 
such as a crack [l, 2, 151 or those with thermal shock 
discontinuities. In a series of recent studies [19-221 on 
the thermi shock formation around a rapidly moving 
heat source or a propagating crack tip, both the tem- 
perature and its gradient approach large values in 
the vicinity of the shock surfaces. In studying the 
associated modes of material failure in this type of 
problem, the mesocrack damage could occur prior to 
the failure modes in a macroscopic level such as yield- 
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ing and fracture [23.24], and incorporating the meso- 
crack damage in estimating the energy-carrying 
capacity of the material continua is necessary. 

Another motivation of the present work is to pro- 
vide a fundamental basis for the evaluation of the 
mesocrack damage evolving in the history of a tem- 
perature gradient. A damage model established on a 
continuum level has been proposed by the authors for 
this purpose (121 which incorporates the evolution of 
the mesocrack density (f) into considerations as the 
temperature gradient increases. For an isotropic 
medium, in brief, the degradation of the bulk thermal 
conductivity was expressed in terms of a damage 
measure D 

L 
--cl-D 
k (35) 

and D depends on the temperature gradient evolving 
in a specified thermal loading history 

D = L%lV~l/lV~cl)” (36) 

where /I and n are the damage parameters depending 
on the mesostructural integrity of the solid medium, 
and VT, the threshold value of the critical temperature 
gradient which, when applied to the solid medium, 
results in a fully saturated mesocrack distribution 
(f= 1) in the solid. In such a model, the temperature 
gradient is attributed as the driven force for the for- 
mation of mesocracks in the thermal loading history. 
In bridging this model with the one being developed 
presently, we see immediately that 

8f 
-9 = HlV~lilV~CI)“. (37) 

When the temperature gradient ]VTl reaches the 
threshold value of ]VT,], the mesocrack density f 
reaches a value of one and equation (37) yields a result 
of 

/I = 8/9 LT 0.89. (38) 

A detailed study on the constitutive behavior of the 
Fourier solid with mesocrack damage for /? ranging 
from 0 to 1.5 has already been made in the earlier 
work [12]. For /? = 0.89 as obtained in equation (38) 
a softening response between the heat flux and the 
temperature gradient will exist in the post-peak 
regime. Post-peak softening is a distinct feature due 
to the evolution of the mesocracks in the solid which 
depicts that when the temperature gradient estab- 
lished in a material volume exceeds a critical value, 
the mesocrack density thereby dramatically increases 
with the temperature gradient and the heat flux 
through the medium consequently decreases even if 
the temperature gradient further increases. The value 
of B obtained in equation (38) is left for the future 
experiments to verify. 

The evolution of the mesocrack density in the 
history of the temperature gradient from 0 to lVr,l. 
refer to equation (37) also imposes an additional 

complexity in the analysis for the heat conduction 
in the solid with damage. For example. because the 
mesocrack density developed in a material volume 
depends on the temperature gradient established at a 
certain step in a specified path of temperature loading, 
it essentially implies the need of decomposing the final 
temperature level imposed on the body into several 
increments. At the end of a temperature increment, 
the mesocrack density is calculated according to the 
established temperature gradient, and the resulting 
bulk thermal conductivity is calculated according to 
equation (35) which is then used in the next tem- 
perature increment for calculating the corresponding 
thermal response. This procedure should be repeated 
until the temperature level reaches the final value and 
the model suggests the accumulation of the mesocrack 
damage in an incremental manner. To be noticed is 
the path-dependency of the damage evolution, and 
hence the thermal field, proposed in this model. In the 
earlier work done by the authors [12], both the path- 
dependent and path-independent approaches were 
studied and detailed discussions were made to stress 
the physical contents of the damage evolution in the 
thermal loading history. 

In extending the present model to account for the 
mesocrack damage in unsteady problems, the diffi- 
culty lies in the estimation of q: in equation (15). This 
term deals with the heat transfer in the aerial closure 
between the mesocrack surfaces. In addition to the 
modelling problems for the heat transfer modes in 
the closure, we also have to determine consistently 
the temperature distributions on the crack surfaces 
according to the same boundary conditions as those 
used in estimating the average heat flux 4;. Due to 
the complexity of the crack problems involving the 
solutions of dual integral equations [1 5, 25, 261, a 
closed form solution for complicated boundary condi- 
tions is difficult to obtain and a numerical algorithm 
to evaluate the integrator in equation (29) may have 
to be used. The problem considered in this paper is a 
simple case possessing a closed form solution for the 
temperature jump and it serves the purpose of illus- 
trating the concept of mesocrack damage in the pro- 
cess of heat transport. 
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DEGRADATION GLOBALE DES SOLIDES CONDUCTEURS PAR DES 
MESOCRAQUELURES 

Rbumh-Un modele continu de la conduction thermique est propose pour tenir compte de la degradation 
de la conductivite globale due a la formation de defauts 1 petite echelle dans le solide. Sp&%quement. des 
dtfauts en forme de craquelure, ou mesocraquelure sont consider&. Une theorie de champ est analy- 
tiquement developpee qui isole les effets de mesocraquelures dans une matrice de resistance thermique. Le 
concept de dommage par mesocraquelure dans le mtcanisme de transfert thermique est illustre en con- 
siderant un milieu tridimensional et isotrope oMissant a la loi de Fourier. On trouve que I’importance de 
la degradation de la conductivitt thermique augmente lineairement avec la densitt de mesocraquelure. 
Dans le cas od le solide est sature de mesocraquelures, on obtient une valeur limite de la conductivite 
thermique f qui est le neuviime de la valeur intacte. Une discussion detaillee sur la valeur limite est faite 
qui Porte sur I’identification des paramttres de dommage dans le modele propose ulterieurement, a gradient 

de temperature, pour tenir compte du dommage par microcraquelure. 

VERMINDERUNG DER WARMELEITFAHIGKEIT VON FESTKGRPERN DURCH 
RISSE MITTLERER GRGSSE 

Zussmmenfassung-In dieser Arbeit wird ein Model1 der Wlrmeleitung in Festkiirpern vorgestellt, das die 
Verminderung der makroskopischen Wlrmeleitfahigkeit durch die Bildung von Mikrofehlern beriick- 
sichtigt. Insbesondere werden Fehler in Form von Rissen oder Meso-Rissen betrachtet. Es wird auf 
analytische Weise eine Feldtheorie entwickelt, die den EinfIuD der Meso-Risse in der Matrix der thermischen 
Widerstlnde separiert. Gefolgt von einer allgemeineren Formulierung wird zungchst das Konzept der 
Meso-RiBentstehung bei Warmetransportvor@ngen erlautert. Hierzu wird ahnlich wie bei Fourier’s 
Warmeleitgesetz ein dreidimensionales isotropes. w%metransportierendes Medium betrachtet. Es zeigt 
sich, daB die Verminderung der makroskopischen Wgrmeleitfihigkeit linear mit der Dichte von Meso- 
Rissen zunimmt. Wenn der Festkiirper mit Meso-Rissen gesattigt ist, ergibt sich ein Grenzwert der 
Wgrmeleitfahigkeit, der nur ein Neuntel des Ausgangswertes betriigt. Es folgt eine detaillierte Diskussion 
dieses Grenzwertes. Dabei wird besonderer Wert auf die Identifikation des Schadensparameters in dem 
Temperaturgradienten-Model1 gelegt, das bereits frriher fur die Betrachtung der Meso-RiB-Schgdigung 

unter einem anderen Gesichtswinkel vorgeschlagen worden ist. 
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TEl-I3IOlTPOBO~~b TBEPAbIX TEJl C ME3OTPEIJJHHAMM 

AmmBWB-~pCmO.%BHB 3@W’EBHan MomJIb TCmOnpOBomOCTU B CpcnC C nOBpB%JUX~ yW- 
TUBWDIUBB yMCHbUlCHHC TCILilOUpOBOJllIOCTH BCJIBJWTBUC 06pa30BiiHHB MEXpOtUCUITa6l5U @BLOB B 

TBBpLlOM TBJIC. PBCCMOTpCHbl J@BBl-bl B +OpMC TpcwHH Rnli Mc3OQBUm. Bmmie nOBpeUrCt&i 3a 
cwr ~ao~perurm lnyneno B pabtxax 06tueii ~eopim ~ennonpo~oa~ocr~ Ha oc~o~.e 3axoHa @ypbe. 
HB&Ho, wo cfene~s yxyrnue~na rennonposolulocr~ JIHH&HO ~ospacracr c Y~M~PCHRCM nnonwcr~ 
MB!JOlQCUlHH. &JIB ClIy’UlB, Sot-l.lB TBCpilg TBJlO HaCbnJlBHO MC3OTpBlUHHiUU, IIOJIyWHO npUWIlsHOC 3HB- 
%me r@HeH?a ~Brmonpo~oim~ k, CocraMlIKluwB l/9 OT 3HaPeWRI noii w~‘smbi tuna HCIIOB- 
perCpCHHOr0 TBJla. npH 06CyBWl5m ZOrO lIpBiWlbHOr0 3Ha’lCHHJl OCO6OC BHXMBHHC ynurnrCn 

HllCHTH~H%iUHH napaheq20B n0Bpernc~~l B iWHHOfi H patiCe npennoxeHHblx MOIIcJlBx. 


